Table of Contents
- Data transformation
- • Kiro Dreams of Data
- • dbt 101 (EU and US-friendly)
- • Ask the experts: Customer product journey
- • How to build a reputation on more than just dashboards
- • Ask the experts: Version controlling your metrics
- • How to complete a data modeling project at a $6B company
- • Kimball in the context of the modern data warehouse: what's worth keeping, and what's not
- • Seven use cases for dbt
- • Quickstart your analytics with Fivetran dbt packages
- • Building a marketing attribution model with dbt
- Data testing
- Implementations + deployment
- Documentation + metadata
- The modern data stack
- Data dream teams
- • Lessons in prioritization: How to balance the 'quick questions' against your team's long-term plan
- • Getting started with technical blogging
- • How to structure a data team
- • Run your data team as a product team
- • Hiring a diverse data team
- • How to start your analytics engineering team
- • Supercharging your data team
- • Balancing creativity and proficiency as a data team
- • Evaluating an offer in the data space
- • Taking off with dbt: JetBlue's dbt journey!
- • Data dream teams: TripActions
- • Data dream teams: Netlify
Human in the loop data processing
What do you do when data is too messy to be useful, but too large for manual cleaning? In this talk, Bladey will share their tips for implementing 'human in the loop' data processing — focusing manual efforts on the messiest data. When their team implemented this approach, a data cleaning task that used to take two months was reduced down to two weeks.
Browse this talk’s Slack archives #
The day-of-talk conversation is archived here in dbt Community Slack.
Not a member of the dbt Community yet? You can join here to view the Coalesce chat archives.
Last modified on: